
CEWES MSRC/PET TR/98-43

Microsoft DirectPlay meets DMSO RTI for
Virtual Prototyping in HPC T&E Environments

by

G.C. Fox
W. Furmanski

S. Nair
Z. Odcikin Ozdemir

08h00198

Work funded wholly or in part by the DoD High Performance
Computing Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense position, policy, or decision unless so designated by
other official documentation.

Microsoft DirectPlay meets DMSO RTI for Virtual Prototyping
in HPC T&E Environments

G.C. Fox, W. Furmanski, S. Nair and Z. Odcikin Ozdemir

Northeast Parallel Architectures Center, Syracuse University, Syracuse NY 13244-4100
gcf@npac.syr.edu, furm@npac.syr.edu

Abstract

In our Pragmatic Object Web approach to distributed object technologies, we integrate
complementary aspects of CORBA, Java, COM and WOM. Here, we focus on Microsoft COM
and we analyze synergies between DirectX / DirectPlay multi-player multimedia gaming
technologies and the DoD Modeling and Simulation technologies such as HLA/RTI. We discuss
the integration of both layers via the COM/CORBA bridge using our JWORB (Java Web Object
Broker) middleware and we outline an early draft of a Web/Commodity based High Performance
Virtual Prototyping Environment for Testing, Evaluation and Simulation Based Acquisition that
will integrate commodity software (DirectX) and hardware (NT clusters) with the legacy
simulation backends.

Introduction

M&S becomes increasingly important for T&E as the fidelity of synthetic environments grows
and Virtual Prototyping becomes a realistic cost effective alternative to traditional operational
tests. Essential software requirements for Virtual Prototyping Environments to serve T&E needs
include: a) integrability of diverse simulation models; b) seemless integration of the simulation
engines with the front-end visualization and the back-end datbaase layers; and c) HPC support for
simulation engines and parallel I/O operations.

Dedicated custom high-end software solutions are hardly competitive today in this area with the
new generation Web/Commodity standards such as DCOM, CORBA and Java. At NPAC, we
coined the term High Performance Commodity Computing (HPcc) [1] to refer to this new trend

June 1-5, 1998 DoD HPC Users Group Conference, Houston, TX 70

Direct X Framework

 Similar to HLA/RTI but
without object/database model
(OMT, OML, FOMs, SOMs)

)LJ �� 'LUHFW;)UDPHZRUN� RUJDQL]HG LQ WKUHH PDMRU KLHUDUFK\
OD\HUV� 'LUHFW ;)RXQGDWLRQ RU 6\VWHP 6HUYLFHV �LQFOXGLQJ
DOO FRUH PXOWLPHGLD VXSSRUW�� 'LUHFW ; 0HGLD RU $SSOLFDWLRQ
6HUYLFHV �LQFOXGLQJ 'LUHFW3OD\� � DQG KLJK OHYHO &RPSRQHQWV
�LQFOXGLQJ 1HW0HHWLQJ� $FWLYH 0RYLH DQG 950/�

June 1-5, 1998 DoD HPC Users Group Conference, Houston, TX 71

Direct X / Play Multiplayer Gaming Samples

)LJ �� 6DPSOH VFUHHQGXPSV RI 'LUHFW ; � 'LUHFW3OD\ EDVHG
QHWZRUNHG PXOWL�SOD\HU JDPHV ZLWK WKH UHDO�WLPH ©ZDUJDPLQJª
VFHQDULRV� GLVWULEXWHG DV SDUW RI WKH FXUUHQW 'LUHFW; UHOHDVHV
�Y� IRU :LQGRZV 17� Y� IRU :LQGRZV ���

of building new HPC on top of commodity base which we call Pragmatic Object Web [2] and
view as an effective integration/interoperability platform for CORBA, Java and DCOM. Our
JWORB project [3][4] addresses CORBA/Java integration whereas here we focus on the DCOM
based Microsoft technology solution.

Although DCOM is still difficult to use as a low level hacker technology, it is closer than its
CORBA and Java competitors to an early but already fully operational prototype solution for a
pragmatic HPcc software infrastructure. In the next section, we will review commodity/NT
clusters and a family of Microsoft servers, ready to address this new niche for High Performance
Computing. We will also discuss there some emergent commodity solutions for other HPC
components such as Virtual Interface Architecture (VIA) by Compaq, Intel and Microsoft that
addresses scalable parallel I/O between PC clusters.

Microsoft front-ends such as interactive networked multimedia technologies are also getting
integrated with COM in the form of the DirectX package that includes 2D graphics, 3D graphics
and video/audio multimedia teleconferencing.

An interesting question arises how to integrate optimally the HLA framework that addresses
integrability of diverse simulation models with other layers of the Microsoft solution. It turns out
that one of the DirectX modules, DirectPlay which supports online gaming and other interactive
entertainment applications offers a functionality similar to RTI i.e. a publish/subscribe based
event driven support for distributed simulations. When compared with RTI, DirectPlay appears to
be a simpler model (for example, it lacks the sophistication of the data Distribution Management
or Time Management services of RTI) but it is attractive due to its close integration with other
DirectX modules such as DirectSound, DirectDraw, DirectInput or Direct3D.

We are currently conducting research into various aspects of Microsoft HPcc solution outlined
above. Our focus is on its potential for the M&S technologies within the FMS and IMT CTAs but
we believe that our findings can be of more general relevance for the HPC Modernization
Program.

This paper summarizes early results of our research into Microsoft commodity technologies of
relevance for DoD Modeling and Simulation. In particular, we describe here: a) our early hands-
on experiments with DirectX modules, especially with DirectPlay; b) a more detailed comparison
of DirectPlay and RTI software bus technologies for distributed simulations; and c) our
integration plan of Microsoft commodity with DoD legacy simulation technologies within the
JWORB (Java Web Object Request Broker) based WebHLA framework.

Commodity / NT Clusters as an Emergent HPC Platform

Important new commercial applications, such as internetworking and the WWW, data
warehousing and data mining, and enterprise-wide management systems, are driving an explosion
in demand for high-end server systems. In the past, commercial users would have looked to
mainframes and super-minicomputers - expensive to acquire, maintain, and upgrade - to satisfy
these new requirements. But today, servers based on mass-produced personal computer
technologies and offering major price / performance advantages over traditional systems are
becoming available to meet the needs of the lower end of these new markets.

Clustering commodity PC servers into highly available and adaptable, high-performance
computing meshes becomes a viable alternative to the minicomputer or mainframe solutions.
Continual increases in the raw power of PC processors and I/O subsystems, combined with the

advent of Microsoft's Windows NT operating system, provide the basic ingredients for building a
cluster of PC servers for an enterprise database or other mission critical applications. This type of
clusters are commonly referred to as a System Area Network (SAN).

In broad terms, commodity clusters are groups of interconnected servers that work as a single
system to provide high-speed, reliable, and scalable service. Until recently, only very expensive,
proprietary systems could deliver the levels of speed, reliability, and scalability required for high-
performance or enterprise computing. With clustering, less expensive, industry-standard systems
now have this capability. Cluster configurations are used to address availability, manageability,
and scalability. By Availability, we mean that when a system or application in the cluster fails,
the cluster software responds by restarting the failed application or dispersing the work from the
failed system to the remaining systems in the cluster. Manageability allows administrators to use
a graphical console to move applications and data within the cluster to different servers for load
balancing purposes. Finally, we probe Scalability when the overall load for a cluster-aware
application exceeds the capabilities of the systems in the cluster and the additional systems can be
added transparently to the cluster configuration.

Clustering can take many forms. At the low end, a cluster may be nothing more than a set of
standard desktop PCs interconnected by an Ethernet. At the high end, the hardware structure may
consist of high performance SMP systems interconnected via a high-performance
communications and I/O bus. A client interact with a cluster as though it was a single high-
performance, highly reliable server. Additional systems can be added to the clusters as needed to
process increasingly complex or numerous requests from clients.

During the evolution of the cluster technology, reliable messaging between clustered servers will
become increasingly critical. The VIA initiative is synergistic with current clustering strategies.
VIArchitecture was developed to minimize message processing delays and to allow more
efficient communication within system area networks. VIArchitecture is the messaging interface
for applications that reside on servers connected in a SAN. The concept behind VIA has its roots
in the traditional messaging between applications and a computer's Network Interface
Controllers. Computer applications operate as if they have unlimited memory. In reality, the OS
gives and takes the actual memory away from applications as it is needed to run other
applications. Traditionally, if an application wanted to send messages to the NIC using the
physical memory, the request had to go through the kernel, which caused processing delays. With
VIA, the applicationcan use its virtual memory addresses to speak directly to the SAN NIC
without going through the kernel. This will greatly reduce the message latency. Although
applications bypass the operating system by sending messages from their virtual addresses, the
OS continues to provide security and messaging setup for the applications.

As mentioned previously, VIA was developed by Microsoft, Intel and Compaq. Microsoft is in
fact ready to address the full spectrum of new software needs for the cluster computing niche with
a famility of server products. This emergent Microsoft solution includes the combination of COM
or/and DCOM based software services such as: a) Microsoft Transaction Server (code name
Viper) for component management; b) Microsoft Message Queue Server (code name Falcon) for
asynchronous messaging; c) Microsoft Cluster Server (code name Wolfpack) for scalable and
highly available NT clusters; and d) Microsoft BackOffice Server for core enterprise services
(including Exchange Server for Email, NetMeeting and Internet Location Server for
Collaboration, SQL Server for Relational Databases etc.).

We are currently starting a new project with Sandia National Laboratory in which we will
evaluate these servers, compare them with alternative commodity solutions (Linux, PC Solaris)

and integrate with our JWORB middleware via COM/CORBA bridges. This way, we will
construct a high performance two-layer middleware with parallel I/O support between the COM
and CORBA software bus architectures. Such framework will enable smooth integration between
new Microsoft front-end technologies for real-time multimedia and network multi-player gaming
such as DirectX / DirectPlay discussed in the next section and the CORBA/HLA based simulation
modules in the backend.

DirectX – Overview

A vital player in transforming Microsoft's Windows Operating System into a major multimedia
platform, and in capturing the gaming market, DirectX is a set of APIs for developing powerful
graphics, sound and network play applications. The biggest incentive that DirectX offers
developers is a consistent interface to devices across different hardware platforms. It achieves this
by abstracting away the underlying hardware by using the HAL (Hardware Abstraction Layer)
and HEL (Hardware Emulation Layer), both of which are integral parts of the DirectX
architecture. This allows for using hardware functionality that might not even be available on the
system. DirectX uses fast, low level libraries, which access multimedia hardware in a device
independent manner. It thus helps developers get rid of a lot of constraints that influence game
design. DirectX, as of version 5, has six categories of APIs to support different device categories
and functionality :

• DirectDraw
• Direct3D
• DirectSound
• DirectPlay
• DirectInput
• DirectSetup

Fig 1 collects all elements of the DirectX Framework and it exposes its hierarchical/layered
organization, starting from the DirectX Foundation or System Services (including all core
multimedia services listed above), followed by DirecrtX Media or Application Services (which
includes DirectPlay), and finally followed by a set of high level components such as NetMeeting
for collaboration, ActiveMovie for video streaming and so on.

Of these elements, the DirectPlay API is of the most interest to us in our discussion of HLA/RTI.
The next section will discuss DirectPlay in a little more detail.

DirectPlay as a part of the DirectX Framework

 DirectPlay is a component of DirectX that provides networking and communication services in a
transport independent manner. DirectPlay provides a consistent interface for the developer
irrespective of whether the transport mechanism is TCP/IP, IPX or modem. This is achieved
using 'service providers', which are layered between DirectPlay and the network. A 'service
provider' would exist for each transport medium. New ones can be created by 3rd party
developers.

A typical DirectPlay gaming scenario would consist of one or more 'sessions'. DirectPlay
provides means to create new sessions, list (enumerate) the existing ones and to connect to an

existing session. Once a player application connects to a session, it can interact with other player
applications in the session. DirectPlay provides methods to move game data among the various
participants. Another interesting feature of DirectPlay is it's Lobby object. The Lobby object has
the functionality of a real world lobby where players can meet, interact and find the right partner
to play against.

Since the look and feel of the DirectPlay interfaces are similar to those of the DirectX
components, with a good application design, DirectPlay can be gracefully merged with other
DirectX components to create exciting and stimulating multi-player games.

The DirectPlay API

The DirectPlay API provides the following services for a networked gaming environment : (The
functions described below are just used to illustrate the DirectPlay services and are not an
exhaustive set of the DirectPlay API functions!)

• Session Management Functions A Direct Play session consists of several applications
communicating with each other over the network. The session management functions are
used to initiate, control and terminate these interactions.

• EnumSessions(...) : Lists/Enumerates all the sessions in progress on the network. –
• Open(...) : Creates a new session or connects to an existing one.
• Close(...) : Disconnects from a session.
• GetSessionDesc(...) : Obtain the session's current properties.

• Player Management Functions The player management funtions are used to manage the
players in a session. In addition to creating and destroying players, an application can
enumerate the players or retrieve a player's communication capabilities.

• EnumPlayers(...) : Lists/Enumerates all the players in the session.
• CreatePlayer(...) : Create a new player.
• DestroyPlayer(...) : Delete a player.
• GetPlayerCaps(...) : Get a player's properties (connection speed etc.)

• Group Management Functions The group management methods allow applications to create
groups of players in a session. Messages can be sent to a group, rather than to one player at a
time if the service provider supports multicasting. This is useful to conserve communication-
channel bandwidth.

• EnumGroups(...) : Lists/Enumerates all the groups in the session.

• CreateGroup(...) : Create a new group.
• DestroyGroup(...) : Delete a group.
• EnumGroupPlayers(...) : Lists/Enumerates all the players in a group.
• AddPlayerToGroup(...) : Adds a new player to a group.
• DeletePlayerFromGroup(...) : Deletes a player from a group.

• Message Management Functions Message management functions are used to route messages
among players. Most messages can be defined specific to the application.

• Send(...) : Sends a message to a player, a group, or all the players in the session. –
• Receive(...) : Receives a message from the message queue.
• GetMessageCount(...) : Returns the number of messages wating in the queue.

• Data Management Functions DirectPlay lets applications associate data with players and
groups. Applications can store two types of information - local and remote. Local data is
meant for and is only available to the application that sets it. Remote data is available to all
the applications in the session and is used like a shared memory.

• SetPlayerData(...) : Sets data for a player.
• GetPlayerData(...) : Gets data for a player.
• SetGroupData(...) : Sets data for a group.
• GetGroupData(...) : Gets data for a group.

DirectPlay is based on COM - the Component Object Model and is made up of objects and
interfaces based on COM just like the rest of DirectX. All the functions described above are in
fact methods of the 'IDirectPlay2' interface of DirectPlay. There are also other DirectPlay library
functions used to enumerate the service providers and to create the DirectPlay object itself, before
using it's interface.

DirectPlay vs HLA RTI

DirectPlay draws comparisons with the HLA RTI due to the common approach that both take in
providing an abstract layer to the network. Although DirectPlay was designed with features
specific to gaming, there are several similarities between the HLA RTI and DirectPlay.

A DirectPlay session is analogous to federation execution in HLA, with each application
(federate) interacting with one another through a communication medium. Both DirectPlay and
RTI provide interfaces and methods to manage sessions/federations. The DirectPlay player
management functions are similar to the RTI object management functions for creating and
destroying players within a session. The notable difference is that DirectPlay does not provide
time synchronization features, and there is no concept of 'declaring' an object's attributes,
'interests' and 'intentions' like in the RTI declaration management service. One of the reasons for
this is that a higher framework model doesn't govern DirectPlay as the HLA governs RTI.
Another reason is that commercial gaming never required these features. Game developers could
decide on their own set of protocols specific to their application.

Next Steps

We are currently in the process of analyzing and testing the most recent DirectX releases
(version 3 for Windows NT and version 5 for Windows 95). A collection of screeens with sample
games distributed as part of the DirectX Software Development Kit is presented in Fig. 2. Our
near term goal is to develop skills in DirectX/DirectPlay game programming and to build suitable
bridges between DirectX and HLA/RTI technologies.

A natural framework to enable DirectX/HLA integration is our JWORB based implementation of
DMSO RTI. In a simple initial experiment [5] of this type illustrated in Fig. 3, we constructed a
3D front-end version of the Jager video game demo – a DMSO federate distributed as part of the
RTI release - and we coupled it with our visual dataflow autoring system WebFlow, operating on

top of the JWORB middlware. Such Web linked interactive real-time simulations will be offered
to the M&S community as part of our FMS Training Space under development [6][7][8].

In the pilot effort (Fig. 3), we used OpenGL for graphics to assure UNIX/NT interoperability but
we noticed the implied penalty in the graphics performance. In the next step, we are developing a
high performance, DirectX / DirectPlay based version of this game. We will also adapt some of
the DirectX gaming front-ends of the Jager type such as collected in Fig. 2 so that they can be
integrated with or replaced by the RTI based middleware and backend of the Jager game. Such
experimentation framework will allow us to explore the DirectPlay / RTI integration issues and to
identify the technologies and programming techniques that offer the most adequate high
performance commodity solutions.

In the Commodity Clusters project with Sandia National Lab mentioned above, we develop
JWORB based high level distributed operating environment that will provide natural linkage
between Windows and UNIX software domains. Indeed, JWORB is a multi-protocol server
which implements CORBA in Java and connects via COM/CORBA bridge with the COM layers
such as DirectX/DirectPlay and via our Object Web (i.e. Java CORBA based) RTI with the DoD
Modeling and Simulation domain.

In consequence, we will be able to construct a poweful next generation M&S environment we
call WebHLA that integrates the best features of commodity technologies such as
DirectX/DirectPlay and DoD M&S technologies such as HLA/RTI. We view such systems to be
of critical relevance to enable Virtual Prototyping Environments for T&E which require high
fidelity interactive front-ends combined with high performance legacy simulations and available
with commercial quality at affordable price.

Fig. 4 illustrates an overall architecture of such environment which will integrate DirectX for
modeling, WebFlow for planning and XML for analysis in the front-end, COM and CORBA in
the JWORB / RTI based middleware, and a suite of legacy simulation modules, packaged as
COM, CORBA or Enterprise JavaBeans components and ready to plug-and-play on the JWORB /
Object RTI software bus.

)LJ �� 13$& �' YHUVLRQ RI WKH -DJHU JDPH� GLVWULEXWHG E\
'062 DV SDUW RI WKH +/$�57, UHOHDVH� +HUH ZH LQWHJUDWH LW
ZLWK :HE)ORZ DQG 2EMHFW 0RGHO %XLOGHU WR SURYLGH WRROV
IRU YLVXDO DXWKRULQJ DQG UHDO�WLPH FRPSXWDWLRQDO VWHHULQJ RI
:HE+/$ DSSOLFDWLRQV�

)LJ �� 1H[W VWHS LQ WKH :HE+/$ HYROXWLRQ ¥ D GLVWULEXWHG
PXOWL�ODE 9LUWXDO 3URWRW\SLQJ (QYLURQPHQW IRU 7HVWLQJ�
(YDOXDWLRQ DQG 6LPXODWLRQ EDVHG $FTXLVLWLRQ ZKLFK
LQWHJUDWHV FRPPRGLW\ VRIWZDUH VXFK DV 'LUHFW; DKG
KDUGZDUH VXFK DV 17 FOXVWHUV ZLWK +/$ EDFNHQGV�

7. References

1. C G. Fox and W. Furmanski, book chapter in Building National Grid, I. Foster and C.
Kesselman, editors, Morgan and Kaufman, 1998.

2. C G. Fox, W. Furmanski, H. T. Ozdemir and S. Pallickara, Building Distributed Systems
for the Pragmatic Object Web, book in progress, Wiley '99.

3. G. C. Fox, W. Furmanski and H. T. Ozdemir, JWORB - Java Web Object Request Broker
for Commodity Software based Visual Dataflow Metacomputing Programming
Environment , submitted for the HPDC-7, Chicago, IL, July 28-31, 1998.

4. G. C. Fox, W. Furmanski and H. T. Ozdemir, “Object Web (Java/CORBA) based RTI to
support Metacomputing M&S”, to appear in Proceedings of the International Test and
Evaluation Association (ITEA) Workshop on High Performance Computing for Test and
Evaluation, Aberdeen MD, July 13-16 1998.

5. G. C. Fox, W. Furmanski, B. Goveas, B. Natarajan and S. Shanbhag, “WebFlow based
Visual Authoring Tools for HLA Applications”, to appear in Proceedings of the
International Test and Evaluation Association (ITEA) Workshop on High Performance
Computing for Test and Evaluation, Aberdeen MD, July 13-16 1998.

6. G. C. Fox, W. Furmanski and T. Pulikal, “Evaluating New Transparent Persistence
Commodity Models: JDBC, CORBA PPS and OLEDB for HPC T&E Databases”, to
appear in Proceedings of the International Test and Evaluation Association (ITEA)
Workshop on High Performance Computing for Test and Evaluation, Aberdeen MD, July
13-16 1998.

7. D. Bernholdt, G. C. Fox, W. Furmanski, B. Natarajan, H. T. Ozdemir, Z. Odcikin
Ozdemir and T. Pulikal, WebHLA - An Interactive Programming and Training
Environment for High Performance Modeling and Simulation , in Proceedings of the
DoD HPC 98 Users Group Conference, Rice University, Houston, TX, June 1-5 1998.

8. G.C.Fox, W. Furmanski, S. Nair, H. T. Ozdemir, Z. Odcikin Ozdemir and T. Pulikal,
“WebHLA - An Interactive Programming and Training Environment for High
Performance Distributed FMS”, to appear in Proceedings of the Simulation
Interoperability Workshop SIW Fall 98, Orlando, FL, September 14-18, 1998.

